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LETTER TO THE EDITOR 

Young diagrams as Kronecker products of symmetric or 
antisymmetric components 
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t Instituto de Ciencias Nucleares, Universidad Nacional Aut6noma de Mexico, Apartudo 
Postal 70-543, Mexico, D F 04510, Mexico 
f Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 
70803-4001, USA 

Received 5 December 1989 

Abstract. A general relation is presented for expressing any Young diagram as an operator 
polynomial acting on the Kronecker product formed from either the rows or columns of 
the original diagram. This relation is used to derive branching rules G 3 H for compact 
groups G and H of GL( N )  which are well suited for numerical computations. The examples 
chosen are the SU(3) 1 SO(3) and SU(4) 3 SU(2) x SU(2) reductions employed in studies 
of nuclear structure and the SU(8) 3 SU(3) decomposition employed in studies of particle 
physics. 

Since their introduction by Littlewood (1943a, b, 1950) over forty-five years ago, Young 
diagrams have served as an invaluable tool to the group theorist for the characterisation 
of general linear GL( N )  representations. Through their use with the Littlewood rules, 
mathematical physicists have determined the reduction of Kronecker (outer) products 
of irreducible representations (irreps) belonging to compact groups within GL( N ) ,  
and ascertained the branching rules from their irreps to those of their associated 
subgroups (Wybourne 1974). Although the Littlewood method has been employed 
extensively for the resolution of these problems, it is found to be cumbersome for 
more than the simplest cases. This has therefore led to the use of machine computation 
for generating many of the available tabulations (Wybourne 1964, Perez and Flores 
1968, McKay and Patera 1981). Although the method is adaptable to computer coding, 
as is evidenced by an available program called SCHUR (Wybourne 1989) which provides 
Kronecker products and branching rule reductions for GL( N )  and any of its subgroups, 
it is not well suited to direct coding into simple algorithms for large scale numerical 
computations. It is not surprising, therefore, that considerable effort has been expended 
into finding practical alternatives or simplifications to this conventional procedure. 

One method presented by Braunschweig and Hecht (1978) exploits the simplicity 
gained in decomposing Young diagrams in terms of Kronecker products of their 
completely symmetric or antisymmetric components. With this method, simple matrices 
d are constructed via a recursive process, and their cofactors evaluated, to determine 
the decomposition of the Young diagram. In this letter, an equivalent but much simpler 
operator realisation of this method is derived which circumvents the need to construct 
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the d matrices and leads to a direct expansion of the Young diagram. This realisation 
is a generalisation to operator form of another method given by Bardeen and Feenberg 
(1938) which is derived here in a much more transparent manner than in their original 
proof. The utility of this operator realisation is illustrated by deriving analytic results 
for branching rules which are easily transcribed into simple computer algorithms. The 
examples chosen are for physically relevant subgroup decompositions of two unitary 
groups employed in nuclear structure models and one used in particle physics for the 
description of a many-gluon system. 

Recall that a Young diagram {flfi. . . f N }  = {f}" is a pattern associated with an 
ordered partition of integers f l  2 fi . . . 2 f N  2 0, which is composed of f l  squares in the 
first row, f2 squares in the second row, etc. Its conjugate pattern {f}" is defined as 
the diagram obtained by the interchange of rows and columns of { f } N ,  and is given 
by the expression 

{f}" = {Nf& ( N  - 1y-,-G. . . . l f l - f , }  

where i t - L + l  represents f; successive occurrences of rows with i squares in each. 
Consider now the general problem of evaluating the Kronecker product of an 

arbitrary Young diagram with a totally antisymmetric one {fN+l} ,  wheref,,, C f N .  

Applying the Littlewood rules for outer product multiplication, the series of Young 
diagrams which results is the sum of those diagrams obtained from {f}"' after 
extracting squares from the last N + 1 column and adding them to the first N columns 
in all possible ways. Using 8, to denote the operator which adds a square to column 
i, and 6;' the operator which removes one, this statement is expressed mathematically 
as 

where the sum over ( i )  = ( i , ,  i2,. . . , i N )  represents all the sets of positive integers i, 
which satisfy ZZli,  = k N ,  and only Young diagrams { p } N + l  associated with ordered 
partitions p,  2 pi 2 . . . 2 p N + ,  3 0 are retained in the final result. 

Commencing with this simple relation, it is possible to derive a simple operator 
realisation for any Young diagram as a sum of Kronecker products of totally antisym- 
metric components. Begin by expanding the k N  sum, and observe that the sum of 
operator products acting on {f}"" is equivalent to the expression 

N N 

I +  1 e 8-l  + C e,leJ,e;2+l+. . .  
J I = ~  'I " + I  ] l , J 2 = 1  

Since applying e-,"+', to {f}"" yields zero whenever M > f N + ,  , one realises the above 
sum of 8 operator products can be extended to infinity, which allows the expression 
to be rearranged into the more compact form 

( f ~ N o ~ f N + l } = ~ i + e l e ; ; : l + e : e ~ ~ , +  ...}( l + e , e ; ~ , + e : e ~ ~ , + . .  . 
~ . . . ~ { i + e ~ e ; ~ + ~ + e 8 2 , e - , 2 , , + . .  . } { f > N + l  
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Now, the operator expression in square brackets is simply a geometric series, and will 
yield unity when acted upon by l l F l ( l  - O,O;'+,). Thus, applying such an operator 
leads to the simple relation 

from which one can obtain by induction the expression 

i C j  

A similar statement to ( 5 )  holds for totally symmetric Young diagrams on realising 
that an expression analogous to ( 1 )  can be written 

where the &j operators here denote the addition of a square to the row i. Identical 
arguments to those outlined above then lead to the result 

icj 

Relations (5) and (7) are the essential results contained within this letter. They 
state that any Young diagram may be expressed as a sum of Kronecker products of 
totally symmetric or antisymmetric diagrams, which are respectively determined by 
evaluating the action of operator polynomials on the initial Kronecker product formed 
from the rows or columns of the original diagram. In the resulting expansion, it is 
implicitly understood that only those products are retained which contain non-negative 
symmetric or antisymmetric diagrams. 

These two derived relations may be viewed as much simpler operator realisations 
of expressions given previously by Braunschweig and Hecht (1978). However, in 
contrast to the former relations which required the recursive construction of simple 
matrices d, and the subsequent evaluation of cofactors for specific matrix elements d,, 
the expressions presented here enable the expansion of the {f}" Young diagram to 
be obtained immediately from the direct action of operator polynomials. This method 
is preferable when carrying out numerical computations, as it avoids the necessity of 
constructing an entire matrix d and then evaluating cofactors to determine the 
expansion coefficients. 

An immediate example which illustrates the advantages of this operator formalism 
are the special cases of two-column and two-rowed diagrams considered by Braun- 
schweig and Hecht (1978). Applying relations (5)  and (7) one trivially retrieves the 
two quoted results 

{'fiJ;z} = { l f l }  0 { 14) - { lfl+'} 0 { 1 f z - ' }  (8) 

(9) 
As previously outlined (Braunschweig and Hecht 1978), a very useful application 

for relations expressing Young diagrams as expansions of Kronecker products is the 

and 

{ f1f i I=  {fllO{fil -if1 + 1)O{f2- 11. 
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determination of irrep branching rules for group chains G ZI H, where G and H are 
subgroups of GL(N), whenever the irreps of H contained within either the totally 
symmetric or antisymmetric irreps of G are known. In these cases the calculation of 
the branching rule is reduced to the problem of evaluating irrep Kronecker products 
belonging to H and simplifying the resulting summation expansion. Furthermore, if 
a closed formula is known for the irrep Kronecker product reduction, then the branching 
rule expressions may be derived in analytic form, which yields useful equations for 
large scale numerical computations. 

A first example, which is of relevance for SU(3) shell model calculations, is the 
branching rule of irreps in the SU(3) 3 SO(3) chain. Since all SU(3) diagrams are at 
most two-rowed, one obtains in the Elliott (1958) notation from (9) the well known 
Kronecker product result 

(A,CL)=(h+CC,O)O(CL,O)-(h+CL+l,O)O(p--,O). (10) 

With substitution of the branching rule for multiplicity free SU(3) irreps 

(A, O)J '"f' [I\ - 2i1 ( 1 1 )  

where [x] denotes the greatest integer function, i.e. the largest integer of x when x is 
positive and zero when it is negative?, one obtains on evaluation of the SO(3) Kronecker 
products [h+p-2j ]O[p-2i ]  plus [A+p+1-2j]O[p-l-22i], the general reduc- 
tion formula 

i = O  

[ ( A + p + I ) / Z ]  [ ( f . - 1 ) / 2 ]  A + Z p - Z j - Z i  c 
j = O  i = O  k = l A - Z j + Z i l  j = O  i = O  k = l A  +Z-Z j+Z i /  

It can be verified that this formula reproduces the already known relation (Racah 
1949, Draayer er a1 1968) 

n(A,p)(k)[kl (13) 
k = 0  

where the SU(3)JSO(3) multiplicity function q A P ) ( k )  is given by 

A + l - k  p + l - k  
n ( A , p ) (  k, = [' + 'l - '1 - [ 7 1  - [ 1. 

Although this last expression (13) is more efficient for numerical computations, it is 
a special result that only applies to the SU(3)JSO(3) case, while the former relation 
(12) was derived by a more direct method using (7), which is applicable to any general 
GJH decomposition within GL( N )  when the reduction for one-rowed representations 
of G are known along with closed formulae for irrep Kronecker products of H. 

To illustrate that the method remains simple and direct for larger groups, consider 
next the example of the Wigner supermultiplet SU(4)JSU(2) x SU(2) reduction 
employed for determining the spin-isospin content of nuclei (Hecht and Pang 1969). 
The conventional approach is to determine the branching rule through the group chain 
SU(4) 3 SO(4) 3 SU(2) x SU(2), and will be the one adopted here. Applying relation 
(7), the three-rowed SU(4) representation is first expanded in terms of Kronecker 
t To remain consistent with standard notation the symbol [ ] is used to denote both SO(N)  irreps and the 
greatest integer function. Its meaning as an irrep or function should be clear from the context in which it 
appears. 
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Insertion of the branching rule into the expansion for (fifzf3) yields 

(9)  [PI/21 [P*/21 [P,/21 c = c  c c 
( i ) = O  i l = O  i2=0 i3=0 

Naturally, only summations with non-negative integer sets are retained in the 
expression. 

These Kronecker products of SO(4) representations may now be reduced using the 
well known analytic expression (Wyboume 1974, p 239) 

a+b,c+d a-b,c-d 

[ab]O[cd]J [ a + c - a l - a 2 , b + d - a , + a 2 ]  
U,=O Qz=o 

for which X 2 i o  represents the sum of a from zero to min(e,f). With this product 
formula the SU(4) 3. SO(4) branching rule is determined, after some minor algebra, to 
be given by 

In this expression the summation over (a) = (a1, a2, a3, a4) represents four in- 
dependent sums from zero to the upper limits 

and 

respectively, where the simplifications & = P k  - 2 i k  and tjk = q k  -2ik, k = 1,2,3 have 
been made. 

(9) = (min(P,,P,), min(P,,P2), min(Fl+p,-2al, h), min(l%+P2-2a2,F3)) 

(6) = (mi441 , 421, min(Q, 9 42),  min(q1 + q2-2a1, Q31, min(ql+ 42-2a2, Q3)) 
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Since SU(2) x SU(2) is the covering group of S0(4), the SU(4) J. SU(2) x SU(2) 
relation is now trivially obtained from (17) by the SO(4) 5. SU(2) x SU(2) isomorphism 

[ f l f i l i  (ul +fA t ( f 1  = ( S ,  TI. (19) 

Employing relations (18) and (19) one may easily code a simple computer algorithm 
which gives the SU(4) J. SU(2) x SU(2) decomposition for any representation. Again 
it may be verified that these formulae reproduce the previously known relation (Racah 
1949) 

(fIfif3) & nST(f1f2f3)(S,  (20) 
S, T 

where the double sum ranges over S, T = i(f, +fi -h), i(fl +fi -A) - 1, . . . , f or 0, and 
the SU(4) 5. SU(2) x SU(2) multiplicity function is given by 

n s ~ ( f i f i f 3 )  = W S T ( ~ I  -h,fi) - ~ S T ( ~ I  llf2-f3 - 1 )  - w s ~ ( f i  -fi - l , f 3  - 1 )  

wST(ff’) = q ( f ‘ +  2 - 1s - TI) - q( f ’+  1 - s - T )  + q( s + T -f- 1 )  

-fq(s+ T - I S -  r I - f + f ’ + i )  (21) 

From a computational viewpoint this latter expression is more efficient than (18). 
However, as remarked in the former example, relation (18)  was derived by a much 
simpler and more direct method which is applicable to any GL( N )  3 G 3 H decomposi- 
tion given two results: the reduction for one-rowed representations of G, and a closed 
formula for irrep Kronecker products of H. By contrast the derivations of (13) and 
(19) are not easily extended to larger groups. Moreover, results such as (12) and (18) 
can be easily coded into simple algorithms which, when used in conjunction with 
recently available routines for balanced binary tree data structures (Park and Draayer 
1989), are still highly efficient for large scale numerical calculations. 

The true merit of the method illustrated in the previous two examples becomes 
evident when considering a problem borrowed from quantum chromodynamics for a 
many-body system of spin-one gluons (Hess and Viollier 1986). For such a system 
the following chain of groups is found to be relevant 

U(24) 1 U(8) x U(3) 
(fIfif3) { f l f ih )  

V S  V U  (22) 
SU(3) SU(2) 
(A ,  P I  S 

where U(8) and U(3) are associated with the eight gluon and three spin degrees of 
freedom, respectively. In the description of this system only the completely symmetric 
representation { N }  of U(24) is of importance. Since the direct product coupling of 
the U(8) and U(3) representations must yield the totally symmetric U(24) irrep { N } ,  
the irreps of U(8) and U(3) are restricted to having the same Young diagram. This is 
at most three rows in general {flf2f3) because of U(3). To exploit this group 
classification for the many-gluon system the ( A , p )  SU(3) and SSU(2) subirreps 
occumng within the unitary representations must be determined along with their 
respective multiplicity S and w. 
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The U(3) 3 SU(2) reduction is already given by relation (12) as the gluons are spin 
one and the (A,  p )  SU(3) irrep is determined by A =fl -f2 plus p =f2-f3. The 
U(8) =SU(3) decomposition is given by equation (2.11) of Hess and Viollier (1986). 
Unfortunately, with the latter relation one needs to determine the coefficients appearing 
in the arbitrary inner product of two U(3) Young diagrams, which for most cases is 
cumbersome to obtain. Under restriction to a completely symmetric U(8) irrep, 
however, this formula simplifies to the following products of U(3) irreps 

{NIL c {gl,gZ,83)0{gl-g2,g2-g3,0} 
Plg2g3 

where the sums are constrained to integer values satisfying X:,lgi = N and Z: , ,h ,  = 
N-1. These U(3) representations are trivially reduced to SU(3), whereupon the 
resulting outer products may be evaluated by applying the closed formula (O’Reilly 
1982) 

(S, t ) @ ( u ,  U)= c c v , s + t  t , u , s + t - a ,  u--L12+a,.s 

( s +  U - a2-2a3+  a l ,  t +  U +  a3 - a2-2a , )  
a , = 0  a*=o n,=0,a2-- f+al  

(24) 
in which X2d.z,b is defined as the sum where a ranges from max(a, b )  to min(c, d, e). 
With the benefit of these last two relations and (14) a complete decomposition of an 
arbitrary three-rowed irrep of U(8) in terms of SU(3) may be determined. As an 
example, the reduction of the (531) U(8) irrep is given in table 1 .  

Table 1. The U(8)  3 SU(3) decomposition {531} 4 (A ,  p ) .  The 6 and dim respectively refer 
to the multiplicity and dimension of the corresponding SU(3) subirreps within {531}, which 
is of dimension 128 304. 

It would not have been practical to obtain the tabulated result for (531) using the 
method outlined by Hess and Viollier (1986). In contrast, the procedure described 
here enables a simple computer algorithm to be developed for carrying out this 
reduction. To test the applicability of the program, the SU(3) decomposition for the 
{12,10,8} and {24,20,16} U(8) irreps were also carried out. Here we only quote the 
quantity of physical interest, namely the number of SU(3) colour singlets occumng 
within these irreps, 3960 and 737 719, respectively. 
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Clearly, there are numerous other examples which could be added, such as the 
SU[( N + 1)(  N + 2)/2] 3 SU(3) reduction employed for determining the available SU(3) 
irreps in the Nth nuclear shell (Draayer et a1 1989). The ones enclosed within this 
letter should suffice to demonstrate the broad range of physical group reductions for 
which relations ( 5 )  and (7) may be effectively applied. 
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